Carbonitriding

Carbonitriding is a metallurgical surface modification technique that is used to increase the surface hardness of a metal, thereby reducing wear. During the process, atoms of carbon and nitrogen diffuse interstitially into the metal, creating barriers to slip, increasing the hardness and modulus near the surface. Carbonitriding is often applied to inexpensive, easily machined low carbon steel to impart the surface properties of more expensive and difficult to work grades of steel. Surface hardness of carbonitrided parts ranges from 55 to 62 HRC.
 
Certain pre-industrial case hardening processes include not only carbon-rich materials such as charcoal, but nitrogen-rich materials such as urea, which implies that traditional surface hardening techniques were a form of carbonitriding.
 
 
Advantages
Carbonitriding also has other advantages over carburizing. To begin, it has a greater resistance to softening during tempering and increased fatigue and impact strength. It is possible to use both carbonitriding and carburizing together to form optimum conditions of deeper case depths and therefore performance of the part in industry. This method is applied particularly to steels with low case hardenability, such as the seat of the valve. The process applied is initially carburizing to the required case depth (up to 2.5mm) at around 900-955°C, and then carbonitriding to achieve required carbonitrided case depth. The parts are then oil quenched, and the resulting part has a harder case than possibly achieved for carburization, and the addition of the carbonitrided layer increases the residual compressive stresses in the case such that the contact fatigue resistance and strength gradient are both increased.
 
 Applications
 Typical applications for case hardening are gear teeth, cams, shafts, bearings, fasteners, pins, hydraulic piston rods, automotive clutch plates, tools, and dies.